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Abstract— As an approach to efficiently perform large-
scale Nonnegative Matrix Factorization (NMF), random-
ized NMF was recently proposed. This approach reduces
the dimension of a given nonnegative matrix by multiply-
ing it by a random matrix, and then performs matrix factor-
ization. However, algorithms for standard NMF cannot be
directly used in randomized NMF because linear inequality
constraints have to be considered instead of nonnegativity
ones. In this paper, we reformulate the optimization prob-
lem for randomized NMF from a different perspective and
propose a novel iterative algorithm which is a combination
of the hierarchical alternating least squares algorithm and
projection onto the feasible region. We also prove that the
proposed algorithm has global convergence property.

1. Introduction

Nonnegative Matrix Factorization (NMF) is the mathe-
matical operation that decomposes a given nonnegative ma-
trix into two low-rank nonnegative matrices [1, 2]. Since
NMF can extract latent features in the given nonnegative
matrix as a set of nonnegative vectors, it has been applied
to image processing, audio signal processing, text mining,
recommender systems, network analysis, and so on. NMF
is formulated as an optimization problem with nonnegativ-
ity constraits [1]. Multiplicative Update Rule (MUR) [1]
and Hierarchical Alternating Least Squares (HALS) al-
gorithms [3] are widely used for solving such problems.
However, when the given nonnegative matrix is very large,
these algorithms require long computation time.

As an approach to efficiently perform large-scale NMF,
randomized NMF was recently proposed [5]. In this ap-
proach, a given nonnegative matrix is multiplied by a ran-
dom matrix to obtain a new matrix of lower dimension, and
then this new matrix is decomposed into two low-rank ma-
trices. However, algorithms for standard NMF cannot be
directly used in randomized NMF because some of the non-
negativity constrains in the original optimization problem
are transformed into linear inequality constraints.
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An algorithm for randomized NMF was first proposed by
Erichson et al. [5]. However, their algorithm does not ex-
actly solve the optimization problem for randomized NMF.
In fact, it does not always return a solution that satisfies the
linear inequality constraints. Another algorithm for ran-
domized NMF was proposed by the authors [6]. Although
this algorithm has been proved to be globally convergent
to the set of stationary points, it is slow because only one
variable is updated at a time.

In this paper, we reformulate the optimization problem
for randomized NMF from a different perspective, and pro-
pose a novel iterative algorithm which is a combination of
the HALS algorithm and projection onto the feasible re-
gion. We also show through experiments using two real
datasets that the proposed algorithm is valid and effective.

2. Randomized NMF

NMF is the operation that decomposes a given nonneg-
ative matrix X ∈ RM×N

+ into two nonnegative matrices
W ∈ RM×K

+ and H ∈ RN×K
+ that satisfy X ≈ WHT, where

R+ denotes the set of nonnegative real numbers. NMF is
formulated as an optimization problem in which the error
between X and WHT is minimized subject to the constraint
that all entries of W and H are nonnegative [1]. In the case
where the error is measured in the Frobenius norm ∥ · ∥F,
the optimization problem for NMF is expressed as follows:

minimize f (W,H) =
1
2

∥∥∥X −WHT
∥∥∥2

F

subject to W ≥ 0M×K , H ≥ 0N×K

(1)

where 0I×J denotes the I× J zero matrix, and the inequality
between matrices is applied entry-wise.

Since the objective function f (W,H) of the problem (1)
is not jointly convex, it is difficult in general to find an op-
timal solution. However, if we consider W or H as con-
stant, the objective function becomes convex. For this rea-
son, many existing algorithms for solving (1) such as the
MUR [1] and the HALS algorithm [3] do not update en-
tries of W and H at the same time.

In the case where the matrix X ∈ RM×N
+ is very large,

the above-mentioned algorithms require long computation
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time. In order to overcome this issue, Erichson et al. pro-
posed a framework called randomized NMF [5], which
is based on approximate matrix decompositions. In the
first step of the framework, one generates a random ma-
trix Ω ∈ RN×K whose entries are drawn i.i.d. from the
standard normal distribution or the uniform distribution on
[0, 1], and obtains Y = XΩ ∈ RM×K , where K is an integer
smaller than min{M,N} and R denotes the set of real num-
bers. The matrix Y is considered as a collection of K points
randomly chosen from the column space of X, and hence
the column space of Y is considered as a K-dimensional
subspace of that of X. Throughout this paper, we impose
the following assumption on Y.

Assumption 1 Y is a column full-rank matrix.

In the second step, one performs a QR decomposition
on Y to obtain a matrix Q ∈ RM×K and an upper triangular
matrix R ∈ RK×K that satisfy both Y = QR and QTQ = IK ,
where IK denotes the K × K identity matrix. Since the set
of K columns of Q is an orthonormal basis for the column
space of Y, we have X ≈ QQTX = QB, where B = QTX ∈
RK×N is called a surrogate matrix of X.

In the third step, one transforms the optimization prob-
lem (1) into another with a lower dimension. Multiplying
both sides of X ≈ WHT by QT from the left and letting
W̃ = QTW, we have B ≈ W̃HT. Since W ≈ QQTW = QW̃
follows from QQT ≈ IM , the nonnegativity constraint W ≥
0M×K is approximately equivalent to the linear inequality
constraint QW̃ ≥ 0M×K . Therefore, one obtains the follow-
ing optimization problem in W̃ ∈ RK×K and H ∈ RN×K :

minimize f1(W̃,H) =
1
2

∥∥∥B − W̃HT
∥∥∥2

F

subject to QW̃ ≥ 0M×K , H ≥ 0N×K .
(2)

Note that the number of variables in (2) is smaller than that
in (1) because K < M. However, the feasible region of (2)
is more complicated than that of (1).

In the last step, one finds an approximate local optimal
solution (W̃∗,H∗) of (2) in some way, and then returns
(QW̃∗,H∗) as an approximate local optimal solution of (1).

Erichson et al. [5] proposed an iterative algorithm based
on the HALS algorithm for solving (2). However, their
algorithm does not always return a solution that satisfies
the linear inequality constraint QW̃ ≥ 0M×K . The authors
of the present paper proposed another iterative algorithm
for solving (2) [6]. This algorithm converges to the set of
stationary points, but is slow because only one variable is
updated at a time.

3. Reformulation of Randomized NMF

Erichson et al. [5] transformed (1) into (2) using the
change of variable W̃ = QTW. In this approach, however,
the nonnegativity constraint W ≥ 0M×K in (1) is not exactly
equivalent to the linear inequality constraint QW̃ ≥ 0M×K

in (2) because QW̃ = QQTW is not exactly equal to W.

In order to avoid this ambiguity, we propose to transform
(1) using the change of variable W = QW̃. In other words,
we restrict the columns of W to those obtained by linear
combination of the columns of Q. Then, the problem (1) is
transformed into the optimization problem:

minimize f2(W̃,H) = 1
2 ∥X − QW̃HT∥2F

subject to QW̃ ≥ 0M×K , H ≥ 0N×K .
(3)

An advantage of our approach is that, for any feasible so-
lution (W̃,H) of (3), we can immediately obtain a feasible
solution of (1), which is given by (QW̃,H).

The problems (2) and (3) have the same constraints but
different objective functions. However, these two problems
are equivalent to each other as shown in the next theorem.

Theorem 1 The objective functions f1 in (2) and f2 in (3)
differ only by a constant.

Proof: Let us define an orthonormal matrix P ∈ RM×M

and a matrix V ∈ RM×K by

P =
(
Q Q̄

)
, V =

(
W̃
0

)
where Q̄ is an M × (M − K) matrix satisfying Q̄TQ̄ = I
and QTQ̄ = 0, that is, the set of M − K columns of Q̄ is
an orthonormal basis for the orthogonal complement of the
column space of Q. Using the equalities PT P = PPT = I,
PV = QW̃ and VTV = W̃TW̃, we have

f1(W̃,H) =
1
2

∥∥∥QTX − W̃HT
∥∥∥2

F

=
1
2

∥∥∥∥∥∥
(

QT

Q̄T

)
X −

(
W̃
0

)
HT

∥∥∥∥∥∥2

F
− 1

2

∥∥∥Q̄TX
∥∥∥2

F

=
1
2

∥∥∥PTX − VHT
∥∥∥2

F −
1
2

∥∥∥Q̄TX
∥∥∥2

F

=
1
2

N∑
n=1

∥∥∥PTxn − V(HT)n

∥∥∥2
2 −

1
2

∥∥∥Q̄TX
∥∥∥2

F

=
1
2

N∑
n=1

(
xT

n xn − 2xT
n QW̃(HT)n

− ((HT)n)TW̃TW̃(HT)n

)
− 1

2

∥∥∥Q̄TX
∥∥∥2

F

=
1
2

N∑
n=1

∥∥∥xn − QW̃(HT)n

∥∥∥2
2 −

1
2

∥∥∥Q̄TX
∥∥∥2

F

= f2(W̃,H) − 1
2

∥∥∥Q̄TX
∥∥∥2

F .

Since the second term of the last formula is a constant, the
functions f1 and f2 differ only by a constant. □

In the first formulation of the randomized NMF [5],
Erichson et al. assumed that the number of columns ofΩ is
equal to the target rank K. However, they also considered
the case where the number of columns of Ω is greater than
K. We thus hereafter assume that Ω is an N × L random
matrix, where L is an integer satisfying K ≤ L ≤ M − 1. In
this case, Q is an M × L matrix and W̃ is an L × K matrix.
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4. Proposed Algorithm

The optimization problem (3) is equivalent to (2) as
shown in Theorem 1. Also, the objective function of (2)
is simpler than that of (3). Therefore, we focus our atten-
tion on (2) in this paper, and design an algorithm for finding
a stationary point.

It was reported by Erichson et al. [5] thatΩ based on the
uniform distribution on [0, 1] gives better results than the
standard normal distribution. We thus impose the following
assumptions on the matrices Ω and Q.

Assumption 2 The entries of Ω ∈ RN×L are drawn
i.i.d. from the uniform distribution on [0, 1]. All entries
in the first column of Q ∈ RM×L are nonnegative, and there
exists at least one nonzero entry in each row of Q.

Note that XΩ is nonnegative whenΩ is nonnegative. So
we can assume without loss of generality that the first col-
umn of Q is nonnegative. The last condition in Assump-
tion 2 is also very mild, and usually satisfied.

We now present an overview of our iterative algorithm
for finding a stationary point of the optimization problem
(2). Given an initial feasible solution (W̃,H) such that

w̃lk

≥ 0, if l = 1,
= 0, if l ∈ {2, 3, . . . , L},

(4)

our algorithm updates the 2K columns of W̃ and H one by
one in the order h1 → w̃1 → h2 → w̃2 → · · · → hK →
w̃K , where w̃k and hk denotes the k-th column of W̃ and H,
respectively. Note that the initial W̃ given by (4) satisfies
QW̃ ≥ 0 because of Assumption 2.

The update rule for (W̃,H) in our algorithm is shown in
Algorithm 1. In Step 3 of Algorithm 1, hk is updated in
the same way as the one presented in the literature [2, 4],
where δ is a positive constant and [t]+ represents the vector
obtained from t by replacing all negative entries with ze-
ros. In Step 4, hk is normalized to guarantee the bounded-
ness of the sequence of solutions generated. Note that this
normalization process does not change the value of w̃k hT

k
and hence the value of the objective function f1(W̃,H). In
Steps 5–16, the system of equations:

w̃k − Sk hk − QTλk = 0L×1,

λk ⊙ (Qw̃k) = 0M×1,

λk ≥ 0M×1,

which is the Karush-Kuhn-Tucker condition for the opti-
mization problem:

minimize 1
2∥w̃k∥22 − (Sk hk)Tw̃k

subject to Qw̃k ≥ 0M×K ,
(5)

is solved approximately for w̃k and λk.
The global convergence of the proposed algorithm is

shown as follows. The proof is omitted due to lack of space.

Algorithm 1 Update Rule for Randomized NMF

Input: X ∈ RM×N
+ , Q ∈ RM×L, W̃ ∈ RL×K , H ∈ RN×K

+ ,
Λ ∈ RM×K

+ , δ, τg ∈ R++, J ∈ Z++.
Output: Updated W̃, H and Λ.

1: Set E← QTX − W̃HT and k ← 1.
2: Set Sk ← E + w̃k hT

k .
3: Set hk ← [(ST

k w̃k + δhk)/(∥w̃k∥22 + δ)]+.
4: If hk , 0N×1 then w̃k ← w̃k∥hk∥2 and hk ← hk/∥hk∥2.

Otherwise set w̃k ← 0K×1 and hk ← uk, where uk ∈ RN
+

is any nonnegative unit vector.
5: Set w̃min

k ← Sk hk.
6: Set Ipos ← {m ∈ {1, 2, . . . ,M} | λmk > 0} and P← 0L×L.
7: For each m ∈ Ipos, set vm ← (QT)m − P(QT)m, and then

set P← P + vmvT
m/∥vm∥22 if vm , 0L×1.

8: Set w̃∗k ← w̃min
k − Pw̃min

k .
9: If Qw̃∗k ≥ 0M×1 then set w̃k ← w̃∗k and go to Step 12.

Otherwise set θmax ← max{θ ∈ [0, 1] |Q(w̃k + θ(w̃∗k −
w̃k)) ≥ 0M×1}, w̃k ← w̃k + θmax(w̃∗k − w̃k) and Inew ←
{m ∈ {1, 2, . . . ,M} | (Qw̃k)m = 0} \ Ipos.

10: For each m ∈ Inew, set vm ← (QT)m − P(QT)m and then
set P← P + vmvT

m/∥vm∥22 if vm , 0L×1.
11: Set w̃∗k ← w̃min

k − Pw̃min
k and return to Step 9.

12: Set Iact ← {m ∈ {1, 2, . . . ,M} | (Qw̃k)m = 0}.
13: Set j← 1.
14: Update the values of λmk (m ∈ Iact) one by one as

λmk ←


(
−w̃min

k −∑
m′∈Iact\{m} λm′k(QT)m′

)T
(QT)m

∥(QT)m∥22


+

.

15: If j < J then set j ← j + 1 and return to Step 14.
Otherwise return to Step 6.

16: If 1
2 ∥w̃k − w̃min

k − QTλk∥22 ≤ τg then go to Step 17.
17: Set E← Sk − w̃k hT

k .
18: If k = K then return W̃, H, Λ and stop. Otherwise set

k ← k + 1 and return to Step 2.

Theorem 2 Suppose that τg is sufficiently small. Then, for
any initial solution (W̃(0),H(0)), the sequence of solutions
{(W̃(t),H(t))}∞t=0 generated by Algorithm 1 has at least one
convergent subsequence, and the limit of any convergent
subsequence is a stationary point of (2).

5. Experiments

In order to evaluate the validity and effectiveness of the
proposed algorithm, the authors conducted experiments us-
ing two image datasets COIL-20 [7] and Olivetti*. From
the COIL-20 dataset, a 1024 × 1440 matrix X with val-
ues between 0 and 1 was constructed. From the Olivetti
dataset, a 4096 × 400 matrix X with values between 0 and
1 was constructed. For these two nonnegative matrices, the
target rank K was set to 10 and L, the number of columns of

*https://scikit-learn.org/0.19/datasets/olivetti_

faces.html
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Figure 1: Evolution of the value of f (W,H): (a) COIL-20
and (b) Olivetti.

Ω, was set to 10, 20, 30, 40 and 50. The random matrix Ω
is generated using pseudo-random numbers from the uni-
form distribution on [0, 1]. The (l, k)-th entry of W̃ was
initialized to 1 if l = 1 and 0 otherwise so that the condi-
tion (4) is satisfied. H was initialized using pseudo-random
numbers from the uniform distribution on [0, 0.1], and Λ
was initialized to 0M×K . The constants were set as follows:
δ = 10−12, τg = 10−2 and J = 20. The proposed algorithm
and the HALS algorithm [4] were implemented in Python
3.9.7 and executed on a computer with Intel Core i5-9500
CPU, 8GB RAM and Windows 10 Pro.

Figure 1 shows the evolution of the objective function
f (W,H) of (1) for the first 50 iterations. Since W is re-
stricted to those given by W = QW̃ in the proposed algo-
rithm, the value of f (W,H) is higher than the HALS al-
gorithm. It is easily seen from the figures that the value
of f (W,H) decreases monotonically in all cases, and that
the larger the value of L, the smaller the value of f (W,H).
Table 1 shows the computation time of the proposed and
HALS algorithms for the first 50 iterations. The pro-
posed algorithm requires shorter computation time than the
HALS algorithm when L ∈ {10, 20, 30, 40}, but there is no
significant difference when L = 50.

Table 1: Computation time for the first 50 iterations.
Algorithm COIL-20 (sec) Olivetti (sec)
Proposed (L = 10) 3.65 3.65
Proposed (L = 20) 6.75 6.29
Proposed (L = 30) 7.56 8.60
Proposed (L = 40) 8.04 9.86
Proposed (L = 50) 10.84 14.73
HALS [4] 12.16 13.40

6. Conclusions

We have reformulated randomized NMF using the
change of variable W = QW̃, and proposed a new iterative
algorithm for solving the optimization problem of random-
ized NMF. We have also shown through experiments using
two real datasets that the proposed algorithm is effective
in terms of computation time when L is small. However,
when L is large, the proposed algorithm has no significant
advantage over the HALS algorithm. Developing faster al-
gorithms for randomized NMF is a future challenge.
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