
New Rules for Choosing Values of Consensus Weights in
Distributed Training of Neural Networks

Kazuaki Harada, Tsuyoshi Migita and Norikazu Takahashi

Graduate School of Natural Science and Technology, Okayama University
3–1–1 Tsushima-naka, Kita-ku, Okayama 700–8530, Japan

Email: harada@momo.cs.okayama-u.ac.jp, migita@cs.okayama-u.ac.jp, takahashi@cs.okayama-u.ac.jp

Abstract—A framework for distributed training of neu-
ral networks was recently proposed. In this framework,
each neural network computes its solution based on the par-
tial knowledge about the training data and then updates the
solution by communicating with each other using some hy-
per parameters known as the consensus weights. In this pa-
per, we propose new rules for choosing the values of the
consensus weights, and show experimentally that the pro-
posed rules can achieve faster convergence.

1. Introduction

Distributed optimization over multiagent networks has
attracted a great deal of attention in the past two
decades [1–4]. A typical situation considered in the litera-
ture of distributed optimization is that an objective function
expressed as the sum of finite functions is given to agents,
but each agent knows only one of them. In this situation,
agents have to find an optimal (or a locally optimal) solu-
tion cooperatively through local optimization for their own
functions and local interaction between neighboring agents
to achieve a consensus. Many algorithms for distributed
optimization have been proposed so far, and proven to con-
verge under certain assumptions.

Recently, Scardapane and Di Lorenzo [5] proposed a
framework for distributed training of multiple neural net-
works (NNs) by extending the NEXT algorithm [2] de-
veloped for the distributed optimization. In this frame-
work, multiple NNs with the same structure try to find a
common set of parameter values that minimizes the loss
for a given training dataset, but the dataset is divided into
nonoverlapping subsets and each subset is given to only one
NN. Thus NNs cooperatively solve the problem through lo-
cal optimization and local interaction. Scardapane and Di
Lorenzo [5] proved the convergence of their algorithms un-
der some assumptions on the loss function, the graph repre-
senting the interaction among NNs, the consensus weights
used in local interaction, and so on, and showed some
experimental results. However, their assumptions on the
consensus weights seem too strong. If these assumptions
can be relaxed, we can choose the values of the consensus
weights more flexibly to increase the speed of convergence.

In this paper, we propose new rules for choosing the val-
ues of the consensus weights. The basic idea behind these

rules is that larger weights should be assigned to those NNs
communicating with many NNs. We show experimentally
that the proposed rules not only are convergent like the con-
ventional rules but also achieve a faster convergence speed.

2. Distributed Training of NNs

In this section, we review the distributed training of NNs
proposed by Scardapane and Di Lorenzo [5].

2.1. Problem Formulation

Suppose that a given set S of training data is divided
into I nonoverlapping subsets, and each subset is assigned
to one of I NNs that communicate with each other. The
i-th subset of S is denoted by Si = {(xi,m, di,m)}Ni

m=1 where
xi,m ∈ Rd and di,m ∈ R for m = 1, 2, . . . ,Ni. Note that
the i-th NN only knows Si and cannot access S j (j , i).
We assume that all NNs have the same structure, that is,
they have the same number of layers, the same number of
neurons in each layer, only one neuron in the output layer,
the same activation functions, and so on. Then the output
of the i-th NN for the input vector x ∈ Rd can be expressed
as f (wi;x) where wi ∈ RQ is the vector composed of all
adjustable parameters.

Assumption 1 The NN model f (w;x) satisfies the fol-
lowing conditions: i) f is continuously differentiable with
respect to w, and ii) f is Lipschitz continuous with respect
to w, that is, there exists a Lipschitz constant L ≥ 0 such
that ∥∇w f (w̃;x) − ∇w f (ŵ;x)∥2 ≤ L ∥w̃ − ŵ∥2 where ∥·∥2
represents the Euclidean norm.

The distributed training of NNs is formulated as the fol-
lowing optimization problem:

minimize U(w) = 1
I
∑I

i=1

(∑I
j=1 g j(wi) + r(wi)

)
subject to w1 = w2 = · · · = wI

(1)

where w = (wT
1 ,w

T
2 , . . . ,w

T
I)T ∈ RQI ,

g j(wi) =
N j∑

m=1

ℓ
(
d j,m, f (wi;x j,m)

)
with ℓ being a loss function, and r(wi) is a regularization
term. Note that the i-th NN cannot compute g j(wi) (j , i)

2019 International Symposium on Nonlinear Theory and Its Applications
NOLTA2019, Kuala Lumpur, Malaysia, December 2-6, 2019.

because g j(·) is determined by S j and the i-th NN cannot
access it.

Assumption 2 The optimization problem (1) satisfies the
following conditions: i) ℓ is convex, continuously differen-
tiable, and Lipschitz continuous, ii) r is either a) convex,
continuously differentiable and Lipschitz continuous, or b)
nondifferentiable convex function with bounded subgradi-
ents, and iii) U is coercive, that is, lim∥w∥→∞ U(w) = ∞.

2.2. Communication among NNs

Throughout this paper, we assume for simplicity that
the communication among NNs is time-invariant, though
the time-varying case is considered in [5]. It is thus ex-
pressed as a time-invariant directed graph G = (V,E)
where V = {1, 2, . . . , I} is the set of vertices, each of
which corresponds to an NN, and E ⊆ V × V is the set
of directed edges. E contains (j, i) if and only if i , j
and the i-th NN can receive information from the j-th
NN. The in-neighborhood and out-neighborhood of ver-
tex i ∈ V are defined as N in

i = { j | (j, i) ∈ E} ∪ {i} and
Nout

i = { j | (i, j) ∈ E} ∪ {i}, respectively.

2.3. Algorithm

In the distributed training of NNs [5], each NN iterates
alternating two operations: local optimization and consen-
sus update. Let wi[n] be the solution obtained by the i-
th NN in the n-th iteration, and π̃i[n] be an estimate of∑I

j=1, j,i ∇wi g j(wi[n]) (details will be explained later). In
the operation of local optimization, each NN first solves
the optimization problem:

minimize g̃i(wi;wi[n]) + π̃i[n]T(wi −wi[n]) + r(wi) (2)

where g̃i(wi;wi[n]) is a strongly convex surrogate function
of gi(wi) at wi = wi[n]. In this paper, we use a simple
surrogate function obtained from gi by linearizing it around
wi = wi[n] and adding a proximal regularization term:

g̃i(wi;wi[n]) = gi(wi[n]) + ∇gi(wi[n])T(wi −wi[n])

+
τ

2
∥wi −wi[n]∥22 (3)

where τ is a positive constant. Let w̃[n] be the solution of
(2). Each NN then computes zi[n] by

zi[n] = wi[n] + α[n](w̃i[n] −wi[n]) (4)

where {α[n]}∞n=0 is a sequence determined by α[n] = α[n −
1](1 − ϵα[n − 1]) with α[0], ϵ ∈ (0, 1]. In the operation of
consensus update, each NN computes wi[n + 1], yi[n] and
π̃i[n + 1] by

wi[n + 1] =
∑
j∈N in

i

ci jz j[n], (5)

yi[n + 1] =
∑
j∈N in

i

ci jy j[n] + ∇gi(wi[n + 1]) − ∇gi(wi[n]),

(6)

π̃i[n + 1] = Iyi[n + 1] − ∇gi[n + 1], (7)

Algorithm 1 Distributed Optimization for Problem (1)
Input: gi, r : RQ → R, G, {ci j} j∈N in

i
, τ, α[0], ϵ

Output: wi ∈ RQ

1: Set wi[0] to a randomly chosen vector. Set yi[0] ←
∇gi(wi[0]), π̃i[0]← Iyi[0] − ∇gi(wi[0]) and n← 0.

2: If the stopping condition is satisfied then return wi[n]
and stop. Otherwise go to Step 3.

3: Set w̃i[n] to the optimal solution of (2) with (3) and
compute zi[n] by (4).

4: Compute wi[n + 1], yi[n + 1] and π̃i[n + 1] by (5), (6)
and (7), respectively.

5: Set n← n + 1 and go to Step 2.

respectively, where ci j are nonnegative constants which we
call the consensus weights in this paper. We should note
that yi[n] and π̃i[n] are estimates of 1

I
∑I

j=1 ∇wi g j(wi[n])
and
∑I

j=1, j,i ∇wi g j(wi[n]), respectively (see [5] for details).
A pseudocode of the algorithm is shown in Algorithm 1.

Proposition 1 (Simplified version of Proposition 2 in [5])
Suppose that i) Assumptions 1 and 2 hold, ii) G = (V,E)
is strongly connected, iii) the consensus weights ci j are
positive and satisfy the following conditions:∑

j∈N in
i

ci j = 1, ∀i ∈ {1, 2, . . . , I}, (8)

∑
j∈Nout

i

c ji = 1, ∀i ∈ {1, 2, . . . , I}, (9)

iv) {α[n]}∞n=0 is chosen so that α[n] ∈ (0, 1] for all n
and
∑∞

n=0 α[n] = ∞. Then all limit points of the se-
quence {(w1[n]T,w2[n]T, . . . ,wI[n]T)T}∞n=0 generated by
Algorithm 1 are stationary solutions of (1).

3. How to Choose Values of Consensus Weights

In this section, we focus our attention on how to choose
the values of consensus weights ci j. We hereafter assume
for simplicity that the communication among NNs is sym-
metric, that is, (i, j) ∈ E if and only if (j, i) ∈ E.

3.1. Conventional Rules

Simple rules often used in consensus algorithms [1] are
given by

ci j =

1/(δi + s), if j ∈ N in
i \ {i},

s/(δi + s), if j = i,
(10)

where δi is the degree of vertex i in G and s ∈ {0, 1}. Note
that we have two rules here depending on the value of s.
Eq.(10) clearly satisfies (8) in both cases where s = 0 and
s = 1, and hence the right-hand side of (5) represents the
arithmetic mean of {z j[n]} j∈N in

i
when s = 1 and that of

{z j[n]} j∈N in
i \{i} when s = 0. However, Eq.(10) does not sat-

isfy (9) in general. Therefore we cannot use Proposition 1
to show the convergence.

Scardapane and Di Lorenzo [5] did not use (10) but the
Metropolis-Hasting rule:

ci j =

1/(max{δi, δ j} + 1), if j ∈ N in
i \ {i},

1 −∑ j∈N in
i

1/(max{δi, δ j} + 1), if j = i,
(11)

in their experiments. It is easy to see that (11) satisfies ci j =

c ji, (8) and (9). Therefore, by Proposition 1, all limit points
of the sequence of {(w1[n]T,w2[n]T, . . . ,wI[n]T)T}∞n=0 gen-
erated by Algorithm 1 are stationary solutions of (1).

Sun et al. [3] claimed that (8) is not needed to prove the
convergence and proposed the following rules:

ci j =

1/(δ j + s), if j ∈ N in
i \ {i},

s/(δ j + s), if j = i,
(12)

where s ∈ {0, 1}1. It is easy to see that (12) satisfies (9) in
both cases where s = 0 and s = 1. In particular, when s =
0, the values of ci j for j ∈ N in

i are inversely proportional to
the degrees of vertices j.

3.2. Proposed Rules

Among various conditions on the consensus weights in
Proposition 1, (8) is reasonable because it makes the right-
hand side of (5) a convex combination of {z j[n]} j∈N in

i
. On

the other hand, the role of (9) is not clear, though it is
needed to the proof [5] of Proposition 1. In fact, it has
been proven [4, 6] that some distributed optimization algo-
rithms converge even if (9) is violated. Taking this fact into
account, we propose the following rules:

ci j =

δ j/(
∑

j∈N in
i \{i} δ j + s), if j ∈ N in

i \ {i},
s/(
∑

j∈N in
i \{i} δ j + s), if j = i,

(13)

where s ∈ {0, 1}. Like (10), Eq.(13) satisfies (8) but neither
ci j = c ji nor (9) in general. The difference between (10)
and (13) is that ci j for j ∈ N in

i \ {i} take the same value in
the former while the values of ci j for j ∈ N in

i \ {i} are pro-
portional to the degrees of vertices j in the latter. The idea
behind (13) is that vertices with higher degrees may have
more information than those with lower degrees. It is thus
expected that NNs reach a consensus faster by assigning
larger weights to NNs with high degrees.

4. Numerical Experiments

In order to clarify the relationship between the rule for
choosing the values of the consensus weights and the con-
vergence property of the distributed training, we perform
experiments using some benchmark datasets.

1Strictly speaking, they proposed only the rule (12) with s = 0.

Table 1: Datasets used in experiments.
Dataset Type d

∑I
j=1 N j

Boston Regression 13 506
Wisconsin Classification 9 689

Figure 1: Communication among 10 NNs.

4.1. Setup

We use two datasets called Boston (or Boston House
Prices) and Wisconsin (or Breast Cancer Wisconsin)2; the
former is a regression problem and the latter a classification
problem. Their characteristics are summarized in Table 1.
In all experiments, the original data are normalized so that
both inputs and outputs lie in the interval [0, 1]. Also, each
dataset is divided into 10 nonoverlapping subsets and they
are assigned to 10 NNs that can communicate with each
other according to the undirected graph G shown in Fig. 1.

Each NN has three layers: the input layer with d neu-
rons, the hidden layer with 10 neurons and the output layer
with a single neuron. The output neurons of NNs for
Boston dataset have the sigmoid activation function and
all other neurons have the hyperbolic tangent activation
function. We use the same loss functions and the reg-
ularization term as [5], that is, the squared loss function
ℓ(a, b) = (a− b)2 for Boston dataset, the cross-entropy loss
function ℓ(a, b) = −a log(b)−(1−a) log(1−b) for Wisconsin
dataset, and the squared regularization term r(w) = λ2 ∥w∥22
for both datasets. The parameters of NNs are initialized by
random numbers drawn from the standard normal distribu-
tion. The hyper parameters are set as τ = 101.5, λ = 10−1,
α[0] = 0.001 and ϵ = 0.01 for Boston dataset, and τ = 10,
λ = 10−0.5, α[0] = 0.0001 and ϵ = 0.01 for Wisconsin
dataset. These values are determined based on preliminary
experiments. All algorithms are implemented in Python
3.6.6 and executed on a PC with Intel Core i5-4590 and
8GB RAM.

4.2. Results

We first compare the seven rules presented in the previ-
ous section in terms of the convergence speed of the objec-
tive value of (1). The time evolution of the objective value
is shown in Fig. 2, where the rules (10), (11), (12) and (13)

2Both datasets are available at UCI Machine Learning Repository
(https://archive.ics.uci.edu/ml/datasets.html).

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400 450 500

o
b
je

c
ti
v
e
 v

a
lu

e

epoch

Simple (s=1)
Simple (s=0)

MH
DIP (s=1)
DIP (s=0)
DP (s=1)
DP (s=0)

(a)

10
2

10
3

10
4

 0 50 100 150 200 250 300 350 400 450 500

o
b
je

c
ti
v
e
 v

a
lu

e

epoch

Simple (s=1)
Simple (s=0)

MH
DIP (s=1)
DIP (s=0)
DP (s=1)
DP (s=0)

(b)

Figure 2: Time evolution of the objective value of (1) for
(a) Boston dataset and (b) Wisconsin dataset.

are denoted by Simple, MH (Metropolis-Hastings), DIP
(Degree Inversely Proportional) and DP (Degree Propor-
tional), respectively. It is easy to see that all rules decrease
the objective value in a similar way for both datasets and
there is no significant difference among seven rules.

We then compare the seven rules in terms of the con-
vergence speed of the average disagreement: D[n] =
1
I
∑I

i=1

∥∥∥wi[n] − 1
I
∑I

j=1 w j[n]
∥∥∥

2
where I = 10. The time

evolution of the average disagreement is shown in Fig. 3.
As one can see, DP is the fastest, Simple is the second, MH
is the third, and DIP is much slower than these three rules.
This indicates that the proposed rules allow NNs to quickly
reach a consensus. It is also important to mention that DP
with s = 0 is faster than that with s = 1, and the same
holds true for Simple. This indicates that each NN should
exclude its own solution when computing the weighted av-
erage of the solutions in its neighborhood.

5. Conclusions

We have proposed new rules for choosing values of con-
sensus weights in the distributed training of neural net-
works, and shown experimentally that the proposed rules
can achieve consensus faster than conventional rules. Eval-
uating the performance of the proposed rules on various
training datasets, and theoretical analysis of the conver-
gence property are future problems.

10
-8

10
-6

10
-4

10
-2

10
0

10
2

 0 50 100 150 200 250 300 350 400 450 500

d
is

a
g
re

e
m

e
n
t

epoch

Simple (s=1)
Simple (s=0)

MH
DIP (s=1)
DIP (s=0)
DP (s=1)
DP (s=0)

(a)

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

 0 50 100 150 200 250 300 350 400 450 500

d
is

a
g
re

e
m

e
n
t

epoch

Simple (s=1)
Simple (s=0)

MH
DIP (s=1)
DIP (s=0)
DP (s=1)
DP (s=0)

(b)

Figure 3: Time evolution of the average disagreement for
(a) Boston dataset and (b) Wisconsin dataset.

References

[1] V. D. Blondel, J. M. Hendrickx, A. Olshevsky and
J. N. Tsitsiklis, “Convergence in multiagent coor-
dination, consensus, and flocking,” Proceedings of
the 44th IEEE Conference on Decision and Control,
pp.2996–3000, December 2005.

[2] P. Di Lorenzo and G. Scutari, “NEXT: In-network
nonconvex optimization,” IEEE Transactions on Sig-
nal and Information Processing over Networks, vol.2.
no.2, pp.120–136, June 2016.

[3] Y. Sun, G. Scutari and D. Palomar, “Distributed
nonconvex multiagent optimization over time-varying
networks,” Proceedings of the 50th Annual Asilo-
mar Conference on Signals, Systems, and Computers,
2016.

[4] A. Nedić and J. Liu, “On convergence rate of
weighted-averaging dynamics for consensus prob-
lems,” IEEE Transactions on Automatic Control,
vol.62, no.2, pp.766–781, February 2017.

[5] S. Scardapane and P. Di Lorenzo, “A framework for
parallel and distributed training of neural networks,”
Neural Networks, vol.91, pp.42–54, July 2017.

[6] N. Takahashi and K. Kawashima, “A simple sufficient
condition for convergence of projected consensus al-
gorithm,” IEEE Control Systems Letters, vol.2, no.3,
pp.537–542, July 2018.

